944 research outputs found

    The cognitive demands of second order manual control: Applications of the event related brain potential

    Get PDF
    Three experiments are described in which tracking difficulty is varied in the presence of a covert tone discrimination task. Event related brain potentials (ERPs) elicited by the tones are employed as an index of the resource demands of tracking. The ERP measure reflected the control order variation, and this variable was thereby assumed to compete for perceptual/central processing resources. A fine-grained analysis of the results suggested that the primary demands of second order tracking involve the central processing operations of maintaining a more complex internal model of the dynamic system, rather than the perceptual demands of higher derivative perception. Experiment 3 varied tracking bandwidth in random input tracking, and the ERP was unaffected. Bandwidth was then inferred to compete for response-related processing resources that are independent of the ERP

    Cerebellar tDCS does not enhance performance in an implicit categorization learning task

    Get PDF
    Background: Transcranial Direct Current Stimulation (tDCS) is a form of non-invasive electrical stimulation that changes neuronal excitability in a polarity and site-specific manner. In cognitive tasks related to prefrontal and cerebellar learning, cortical tDCS arguably facilitates learning, but the few studies investigating cerebellar tDCS, however, are inconsistent. Objective: We investigate the effect of cerebellar tDCS on performance of an implicit categorization learning task. Methods: Forty participants performed a computerized version of an implicit categorization learning task where squares had to be sorted into two categories, according to an unknown but fixed rule that integrated both the size and luminance of the square. Participants did one round of categorization to familiarize themselves with the task and to provide a baseline of performance. After that, 20 participants received anodal tDCS (20 min, 1.5 mA) over the right cerebellum, and 19 participants received sham stimulation and simultaneously started a second session of the categorization task using a new rule. Results: As expected, subjects performed better in the second session than in the first, baseline session, showing increased accuracy scores and reduced reaction times. Over trials, participants learned the categorization rule, improving their accuracy and reaction times. However, we observed no effect of anodal tDCS stimulation on overall performance or on learning, compared to sham stimulation. Conclusion: These results suggest that cerebellar tDCS does not modulate performance and learning on an implicit categorization task

    P300 and uncertainty reduction in a concept identification task.

    Get PDF
    The relationship between the amplitude of P300, the mean amplitude of the Slow Wave, and uncertainty reduction after (dis)confirmation of hypotheses was studied in a Concept-Identification task. The subjects had to categorize stimuli according to a conceptual rule (joint denial or exclusion) and to rate the confidence that their classification was correct. Three types of feedback were distinguished: confirming (subject's categorization was correct), disconfirming (subject's categorization was incorrect), and non-informative feedback. The EEG was averaged separately according to the three types of feedback and the two confidence ratings (low, high). The data showed the predicted interaction between type of feedback and confidence level. A larger P300 amplitude turned up after confirming feedback when the subject was less confident, than when he was more confident. The reverse was found after disconfirming feedback. The P300 amplitude after non-informative feedback was not influenced by confidence. The mean amplitude of the Slow Wave showed approximately the same interaction pattern. The results were interpreted in terms of changes in the probability of hypotheses which subjects use to categorize stimuli in a Concept-Identification task

    Cerebellar transcranial direct current stimulation effects on saccade adaptation

    Get PDF
    Saccade adaptation is a cerebellar-mediated type of motor learning in which the oculomotor system is exposed to repetitive errors. Different types of saccade adaptations are thought to involve distinct underlying cerebellar mechanisms. Transcranial direct current stimulation (tDCS) induces changes in neuronal excitability in a polarity-specific manner and offers a modulatory, noninvasive, functional insight into the learning aspects of different brain regions. We aimed to modulate the cerebellar influence on saccade gains during adaptation using tDCS. Subjects performed an inward (n = 10) or outward (n = 10) saccade adaptation experiment (25% intrasaccadic target step) while receiving 1.5 mA of anodal cerebellar tDCS delivered by a small contact electrode. Compared to sham stimulation, tDCS increased learning of saccadic inward adaptation but did not affect learning of outward adaptation. This may imply that plasticity mechanisms in the cerebellum are different between inward and outward adaptation. TDCS could have influenced specific cerebellar areas that contribute to inward but not outward adaptation. We conclude that tDCS can be used as a neuromodulatory technique to alter cerebellar oculomotor output, arguably by engaging wider cerebellar areas and increasing the available resources for learning

    The mind's eye, looking inward? In search of executive control in internal attention shifting

    Full text link
    In studies of mental counting, participants are faster to increment a count that was just incremented (no-switch trial) than to increment a different count (switch trial). Investigators have attributed the effect to a shift in the internal focus of attention on switch trials. Here we report evidence for other bottom-up and top-down contributions. Two stimuli were mapped to each of two counts. The no-switch facilitation was greater when stimuli repeated than when they were different. Event-related potential (ERP) activity associated with repetitions was anterior to that associated with switching. Runs of no-switch trials elicited faster responses and frontal ERP activity. Runs of switches and large counts both elicited slow responses and reduced P300 amplitudes. Bottom-up processes may include priming on no-switch trials and conflict on switch trials. Top-down processes may control conflict, subvocal rehearsal, and the contents of working memory.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73572/1/1469-8986.00059.pd

    Cognitive control in belief-laden reasoning during conclusion processing: An ERP study

    Get PDF
    Belief bias is the tendency to accept conclusions that are compatible with existing beliefs more frequently than those that contradict beliefs. It is one of the most replicated behavioral findings in the reasoning literature. Recently, neuroimaging studies using functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) have provided a new perspective and have demonstrated neural correlates of belief bias that have been viewed as supportive of dual-process theories of belief bias. However, fMRI studies have tended to focus on conclusion processing, while ERPs studies have been concerned with the processing of premises. In the present research, the electrophysiological correlates of cognitive control were studied among 12 subjects using high-density ERPs. The analysis was focused on the conclusion presentation phase and was limited to normatively sanctioned responses to valid–believable and valid–unbelievable problems. Results showed that when participants gave normatively sanctioned responses to problems where belief and logic conflicted, a more positive ERP deflection was elicited than for normatively sanctioned responses to nonconflict problems. This was observed from −400 to −200 ms prior to the correct response being given. The positive component is argued to be analogous to the late positive component (LPC) involved in cognitive control processes. This is consistent with the inhibition of empirically anomalous information when conclusions are unbelievable. These data are important in elucidating the neural correlates of belief bias by providing evidence for electrophysiological correlates of conflict resolution during conclusion processing. Moreover, they are supportive of dual-process theories of belief bias that propose conflict detection and resolution processes as central to the explanation of belief bias

    Psychophysiological Correlates of Sexually and Non-Sexually Motivated Attention to Film Clips in a Workload Task

    Get PDF
    Some authors have speculated that the cognitive component (P3) of the Event-Related Potential (ERP) can function as a psychophysiological measure of sexual interest. The aim of this study was to determine if the P3 ERP component in a workload task can be used as a specific and objective measure of sexual motivation by comparing the neurophysiologic response to stimuli of motivational relevance with different levels of valence and arousal. A total of 30 healthy volunteers watched different films clips with erotic, horror, social-positive and social-negative content, while answering an auditory oddball paradigm. Erotic film clips resulted in larger interference when compared to both the social-positive and auditory alone conditions. Horror film clips resulted in the highest levels of interference with smaller P3 amplitudes than erotic and also than social-positive, social-negative and auditory alone condition. No gender differences were found. Both horror and erotic film clips significantly decreased heart rate (HR) when compared to both social-positive and social-negative films. The erotic film clips significantly increased the skin conductance level (SCL) compared to the social-negative films. The horror film clips significantly increased the SCL compared to both social-positive and social-negative films. Both the highly arousing erotic and non-erotic (horror) movies produced the largest decrease in the P3 amplitude, a decrease in the HR and an increase in the SCL. These data support the notion that this workload task is very sensitive to the attentional resources allocated to the film clip, although they do not act as a specific index of sexual interest. Therefore, the use of this methodology seems to be of questionable utility as a specific measure of sexual interest or as an objective measure of the severity of Hypoactive Sexual Desire Disorder

    Telephone conversation impairs sustained visual attention via a central bottleneck

    Get PDF
    Recent research has shown that holding telephone conversations disrupts one's driving ability. We asked whether this effect could be attributed to a visual attention impairment. In Experiment 1, participants conversed on a telephone or listened to a narrative while engaged in multiple object tracking (MOT), a task requiring sustained visual attention. We found that MOT was disrupted in the telephone conversation condition, relative to single-task MOT performance, but that listening to a narrative had no effect. In Experiment 2, we asked which component of conversation might be interfering with MOT performance. We replicated the conversation and single-task conditions of Experiment 1 and added two conditions in which participants heard a sequence of words over a telephone. In the shadowing condition, participants simply repeated each word in the sequence. In the generation condition, participants were asked to generate a new word based on each word in the sequence. Word generation interfered with MOT performance, but shadowing did not. The data indicate that telephone conversation disrupts attention at a central stage, the act of generating verbal stimuli, rather than at a peripheral stage, such as listening or speaking
    corecore